The effect of air pollution on aggravation of neurodegenerative diseases

An analysis of long-term exposure to fine particulate matter and its components

Yanelli Núñez September 2, 2020

Department of Environmental Health Science

- Background
- Overall research question
- Study 1: $PM_{2.5}$ exposure & disease aggravation in amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease
- Study 2: Exposure to specific $PM_{2.5}$ components & disease aggravation in Parkinson's disease
- Conclusion & Implications
- Other projects

Neurodegenerative diseases

Study 1

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Neurodegenerative diseases

- Long asymptomatic pre-clinical state
- Clinical symptoms begin in older adulthood
- Disease prognosis highly variable
 - A couple years to decades
- Little known about factors that determine disease aggravation and no treatment available

Data source: United Nations (2017). World Population Prospects: the 2017 Revision.

Percentage of population aged 60 years or over by region, from 1980 to 2050

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Neurodegenerative diseases are costly

Average annual per-person payments for health care. Medicare beneficiaries age ≥ 65 years with and without Alzheimer's or other dementias, in 2018 dollars

Service	Beneficiaries with Alzheimer's or other dementias	Beneficiaries without Alzheimer's or other dementias
Inpatient hospital	\$11,306	\$3652
Medical provider	5728	3568
Skilled nursing facility	6977	477
Nursing home	15,984	774
Hospice	2060	156
Home health care	2578	374
Prescription medications	3503	3005
	\$48, 136	312,006

Study 2

Conclusions & Implications

MAILMAN SCHOOL

Environmental and genetic factors

Genetic factors

- Multiple genetic variants identified
- Majority of cases are sporadic
- Age of clinical symptom onset is variable
- Differences in disease progression rate

Environmental factors

- Multiple exposures suggested but nothing confirmed
 - Metals
 - Pesticides

Study 2

Conclusions & Implications

Air pollution effects on the nervous system

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- Evidence suggests air pollution affects the central nervous system
- Linked with neuropathological changes
 - Neuroinflammation
 - Proteinopathies
 - Oxidative stress

CD68 & microglia in blood vessels of the brain

a-synuclein-positive granular stain in substantia nigra cells

Fine particulate matter has most consistently been implicated in adverse neurological processes

Study 2

Conclusions & Implications

of PUBL

MAILMAN SCHOOL

Fine particulate matter is a mixture

- Fine particulate matter $(PM_{2.5})$
 - Any particle $\leq 2.5~\mu m$ in diameter
 - Total $PM_{2.5}$ mass consists of different chemical components
- $\mathrm{PM}_{2.5}$ total mass represents a mixture of pollutants
- Local sources of pollution and other factors (e.g. weather) influence $\rm PM_{2.5}$ composition

COLUMBIA

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

• Main PM_{2.5} components

 $PM_{2.5}$ composition varies

- Organic matter
- Sulfates
- Nitrates
- Black carbon
- Trace amounts of metals
- Proportion of each component varies temporally and geographically

Population-weighted Mass Concentration [μ g/m³]

Fig. adapted from Donkelaar, A., et al. American Chemical Society, 2019

$PM_{2.5}$ and neurodegenerative diseases

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- $PM_{2.5}$ composition
- Differences across results

Study ID	OR (95% CI)
Parkinson's disease	
Chen et al. (2017a)	1.09 (1.06, 1.15)
Kioumourtzoglou et al. (2016)	2.16 (1.48, 3.11)
Kirrane et al. (2015)	2.02 (0.84, 4.84)
Liu et al. (2016)	1.95 (0.85, 4.43)
Liu et al. (2016)	 4.63 (1.03, 20.82)
Palacios et al. (2014)	1.08 (0.81, 1.45)
Palacios et al. (2017)	0.97 (0.72, 1.32)
Overall (I-squared = 71.1%, p = 0.002)	> 1.34 (1.04, 1.73)
Alzheimer's disease	
Culqui et al. (2017)	1.17 (1.07, 1.28)
Jung et al. (2015)	
Kioumourtzoglou et al. (2016)	4.05 (2.84, 5.69)
Overall (I-squared = 99.5%, p = 0.000)	3.26 (0.84, 12.74)
1 5 1	

$PM_{2.5}$ and neurodegenerative diseases

COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

- PM_{2.5} composition
- Differences across results
- Disease aggravation less studied

ID	OR (95% CI)
Parkinson's disease	
Chen et al. (2017a)	1.09 (1.06, 1.15)
Kioumourtzoglou et al. (2016)	· 2.16 (1.48, 3.11)
Kirrane et al. (2015)	2.02 (0.84, 4.84)
Liu et al. (2016)	1.95 (0.85, 4.43)
Liu et al. (2016)	4.63 (1.03, 20.82)
Palacios et al. (2014)	1.08 (0.81, 1.45)
Palacios et al. (2017)	0.97 (0.72, 1.32)
Overall (I-squared = 71.1%, p = 0.002)	1.34 (1.04, 1.73)
Alzheimer's disease	
Culqui et al. (2017)	1.17 (1.07, 1.28)
Jung et al. (2015)	 7.37 (6.22, 8.72)
Kioumourtzoglou et al. (2016)	4.05 (2.84, 5.69)
	2 00 /0 04 40 74

Overall Research Question

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Does long-term PM_{2.5} exposure contribute to <u>disease aggravation</u> in neurodegenerative diseases?

2. Effect of specific $PM_{2.5}$ components

Parkinson's disease

Fine Particle Exposure and Hospital Admissions for Neurodegenerative Diseases in New York State

Yanelli Nunez, Amelia K. Boehme, Marc G. Weisskopf, Diane B. Re, Ana Navas-Acien, Aaron V. Donkelaar, Randall V. Martin, and Marianthi-Anna Kioumourtzoglou

Study 2

Conclusions & Implications

Hospitalization data

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- SPARCS
- 98% of all hospitalizations in non-federal acute care facilities
- International Classification of Diseases 9 (ICD-9)
- Annual-county-counts of first hospitalization
- Years 2000-2014
- Years 1995-1999 to remove prevalent cases

Disease onset (

Clinical diagnosis

First hospitalization

Advanced disease stage

Conclusions & Implications

First hospitalization: surrogate of aggravation

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

First hospitalization

Primary diagnosis code

Health events **directly** related to the disease

 Symptoms not exclusive to motor and cognitive deficits
 Collateral health damage Better representation of the stage of disease

- More hospitalizations in patients with a neurodegenerative disease
- Increased hospital visits as disease progresses
- 50% of admissions at advanced stages of disease

Secondary diagnosis code

Health events **indirectly** related to the disease

COLUMBIA | MAILMAN SCHOOL

	Mean	St Dev	25%	Median	75%
Outcome					
AD	283.9	469.1	45.0	82.0	260.0
Female	191.0	319.0	29.0	53.0	173.0
Male	93.6	151.0	16.0	30.0	87.7
<70 years	19.9	35.5	3.0	6.0	17.0
≥ 70 years	265.0	436.0	42.0	76.0	244.7
DD	101.1	222.0	01.0	27.0	101.0
	131.1	222.0	21.0	37.0	121.0
Female	57.8	98.8	9.0	10.0	52.0
Male	65.4	110.0	11.0	19.0	60.0
<70 years	29.0	51.6	4.0	9.0	26.0
≥ 70 years	94.9	160.0	15.0	26.0	86.0
ALS	6.0	9.5	1.0	2.0	6.0
Female	2.7	4.5	0.0	1.0	3.0
Male	3.3	5.3	0.0	1.0	3.0
<70 years	4.2	6.49	1.0	2.0	4.0
U					

Nunez, Y., et al. Env. Health Perspectives. Under revision

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Annual per-county counts of first hospitalizations from 2000—2014 in NYS

	Mean	St Dev	25%	Median	75%
Outcome					
AD	283.9	469.1	45.0	82.0	260.0
Female	191.0	319.0	29.0	53.0	173.0
Male	93.6	151.0	16.0	30.0	87.7
<70 years	19.9	35.5	3.0	6.0	17.0
≥ 70 years	265.0	436.0	42.0	76.0	244.7
PD	131.1	222.0	21.0	37.0	121.0
Female	57.8	98.8	9.0	16.0	52.0
Male	65.4	110.0	11.0	19.0	60.0
<70 years	29.0	51.6	4.0	9.0	26.0
≥ 70 years	94.9	160.0	15.0	26.0	86.0
ALS	6.0	9.5	1.0	2.0	6.0
Female	2.7	4.5	0.0	1.0	3.0
Male	3.3	5.3	0.0	1.0	3.0
<70 years	4.2	6.49	1.0	2.0	4.0
• /					

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Annual per-county counts of first hospitalizations from 2000—2014 in NYS

	Mean	St Dev	25%	Median	75%
Outcome					
AD	283.9	469.1	45.0	82.0	260.0
Female	191.0	319.0	29.0	53.0	173.0
Male	93.6	151.0	16.0	30.0	87.7
<70 years	19.9	35.5	3.0	6.0	17.0
≥ 70 years	265.0	436.0	42.0	76.0	244.7
'D	131.1	222.0	21.0	37.0	121.0
Female	57.8	98.8	9.0	16.0	52.0
Male	65.4	110.0	11.0	19.0	60.0
<70 years	29.0	51.6	4.0	9.0	26.0
≥ 70 years	94.9	160.0	15.0	26.0	86.0
ALS	6.0	9.5	1.0	2.0	6.0
Female	2.7	4.5	0.0	1.0	3.0
Male	3.3	5.3	0.0	1.0	3.0
<70 years	4.2	6.49	1.0	2.0	4.0
≥ 70 years	2.9	3.9	1.0	1.0	3.0

Nunez, Y., et al. Env. Health Perspectives. Under revision

Study 2

Conclusions & Implications

Exposure assessment

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- $PM_{2.5}$ prediction model by Van Donkelaar et al., 2019
- Based on aerosol optical depth estimates, chemical transport models and geographically weighted regression
- High accuracy ($R^2 = 0.76$)
- + 1km \times 1km grid resolution
- Annual county-level averages
- Years 2000-2014

Study 2

Conclusions & Implications

Geographic & temporal contrast

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Annual concentrations of $PM_{2.5}$ per county from 2000-2014

Background	Research Question	Study 1	Study 2	Conclusions & Implications
Statistical r	nodel			COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

- Separate models for each disease: AD, PD, ALS
- Quasi-Poisson generalized additive mixed model to estimate rate ratio (RR) and 95% confidence intervals (CIs)

- Sex
- Age (≥70 & <70 years)

Study 2

Conclusions & Implications

Sensitivity analysis

Minimize false positives due to disease misclassification

- At least two hospitalizations with primary or secondary diagnosis for the disease
- Second hospitalization as a diagnosis verification

Background	Research Question	Study 1	Study 2	Conclusions & Implications
				COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH
				UNIVERSITY of PUBLIC HEA

Results

Research Question

Study 1

Study 2

Conclusions & Implications

$PM_{2.5}$ and ALS first hospitalizations

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

No deviations from linearity

Nunez, Y., et al. Env. Health Perspectives. In revision

Study 1

Study 2

Conclusions & Implications

$PM_{2.5}$ and ALS first hospitalizations

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

No significant overall association or effect modification by sex

Study 1

Study 2

Conclusions & Implications

of PUBLIC

MAILMAN SCHOOL

$PM_{2.5}$ and ALS first hospitalizations

Effect modification by age

- Positive association <70 years old (RR = 1.04, 95% CI: 1.00-1.08)
- Negative association \geq 70 years old (RR = 0.95, 95% CI: 0.91-0.99)

Study 2

Conclusions & Implications

of PUBLIC

MAILMAN SCHOOL

$PM_{2.5}$ and PD first hospitalizations

Nonlinear positive association

• Steeper slope at lower concentrations

D COLUMBIA

 Significant association even at concentrations below current National Ambient Air Quality Standards (NAAQS)

Study 2

Conclusions & Implications

MAILMAN SCHOOL

of PUBLIC HEALTH

No sex effect modification in PD

- No effect modification by sex
- Positive significant associations in both male and female

UNIVERSITY

Study 2

Conclusions & Implications

MAILMAN SCHOOL

of PUBLIC HEALTH

Effect modification by age in PD

- Effect modification by age at low concentrations
 - < 70 years of age, stronger effect

UNIVERSITY

Nunez, Y., et al. Env. Health Perspectives. In revision

Study 2

Conclusions & Implications

$PM_{2.5}$ and AD first hospitalizations

- Null association
- No effect modification by sex
- No effect modification by age

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- Removed potential false positives
- Positive association in lower $PM_{2.5}$ concentrations
- Significant association even at concentrations below NAAQS

Summary

Study 1

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Does long-term PM_{2.5} exposure contribute to <u>disease aggravation</u> in neurodegenerative diseases?

1. Total $PM_{2.5}$ mixture effect

- Consistent PM_{2.5}—PD association
- Stronger association in PD patients <70 years old
- Potential PM_{2.5}—AD association
- Inconclusive results for ALS

2. Effect of specific PM_{2.5} components

Parkinson's disease

Study 2

Conclusions & Implications

MAILMAN SCHOOL

Strengths & limitations

Limitations:

- Limited statistical power in ALS
- Disease misclassification
- Exposure measurement error

Strengths:

- Large and diverse geographical region
- Flexible models
- 15 years of data
- Disease aggravation

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Does long-term PM_{2.5} exposure contribute to <u>disease aggravation</u> in neurodegenerative diseases? 1. Total $PM_{2.5}$ mixture effect

 Consistent PM_{2.5}—PI association

- Stronger effect in PD patients <70 years old
- Potential PM_{2.5}—A association

2. Effect of specific $PM_{2.5}$ components

Parkinson's disease

•

Parkinson's disease hospitalizations in association with fine particle components in New York State

Yanelli Nunez, Amelia K. Boehme, Marc G. Weisskopf, Jeff Goldsmith, Ana Navas-Acien, AaronV. Donkelaar, Diane B. Re, Randall V. Martin, Marianthi-Anna Kioumourtzoglou

Study 2

$PM_{2.5}$ components and PD first hospitalization

COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

• SPARCS

- PD county-level annual counts
- Years 2000-2014
- Years 1995-1999 to remove prevalent cases
- PM_{2.5} components prediction model by Van Donkelaar et al., 2019
 - Six main $PM_{2.5}$ components
 - Population-weighted averages

Descriptive statistics based on annual per-county estimates from 2000—2014 in NYS

	Mean	St Dev	25%	Median	75%
Outcome					
PD	131.1	222.0	21.0	37.0	121.0
Component $(\mu g/m^3)$					
$\overline{\mathrm{PM}_{2.5}}$	8.10	2.30	6.40	7.60	9.20
Black Carbon	0.66	0.24	0.51	0.59	0.71
Nitrate	0.96	0.33	0.73	0.91	1.14
Organic Matter	2.87	0.67	2.36	2.74	3.30
Sulfate	2.51	0.87	1.79	2.41	3.09
Soil	0.29	0.10	0.22	0.28	0.33
Sea Salt	0.26	0.16	0.15	0.21	0.32

Study 2

Conclusions & Implications

Statistical models

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- Quasi-Poisson generalized additive mixed model to estimate RR and 95% CIs
 - Evaluated nonlinearities
 - Adjusted for potential confounder
 - Population offset
- Outcome:
 - Annual county counts of first PD hospitalizations
- Exposure:
 - Multi-pollutant model: included all $PM_{2.5}$ components
 - Specific-pollutant model: included only one $PM_{2.5}$ component at a time, adjusted for total $PM_{2.5}$ mass

Background	Research Question	Study 1	Study 2	Conclusions & Implications
				COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

Results

Background	
------------	--

Study 2

Conclusions & Implications

UNIVERSITY

MAILMAN SCHOOL

of PUBLIC HEALTH

$\overline{PM}_{2.5}$ components and PD hospitalizations

Nitrate and organic matter have a consistent positive association

• 5% increased in first hospitalization per standard deviation increase

Nunez, Y., et al. Manuscript in prep

Study 2

Conclusions & Implications

MAILMAN SCHOOL

of PUBLIC HEALTH

Black carbon: nonlinear association

- Exposure—response from multi-pollutant model
- Negative association at high concentrations

COLUMBIA

UNIVERSITY

Summary

Study 1

Study 2

Conclusions & Implications

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Does long-term PM_{2.5} exposure contribute to <u>disease aggravation</u> in neurodegenerative diseases? **1. Total PM_{2.5} mixture effect**

• Consistent PM_{2.5}—PI association

- Stronger effect in PD patients <70 years old
- Potential PM_{2.5}—AD association

2. Effect of specific $PM_{2.5}$ components

- Not all components were associated with the outcome
- Harmful components:
 - Nitrate
 - Organic matter

Study 2

Conclusions & Implications

Strengths & limitations

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

Limitations:

- Exposure data do not include all $PM_{2.5}$ components
- Exposure measurement error varies by component

Strengths:

- First analysis of $\rm PM_{2.5}\,components$ in association with disease aggravation in Parkinson's disease
- Population-weighted averages for $PM_{2.5}$ components
- Results consistent across models

Conclusions & Implications

Study 2

Conclusions & Implications

D COLUMBIA

MAILMAN SCHOOL

Conclusions & implications, study 1

- 1. Annual $PM_{2.5}$ exposure is associated with first hospitalization in PD and possibly in AD but limited power in ALS
 - $PM_{2.5}$ exposure may contribute to disease aggravation in these conditions
 - Significant harmful effects in $PM_{2.5}$ exposure levels below current National Ambient Air Quality Standards
- 2. Stronger effect in PD patients with a first hospitalization before age 70
 - Certain patient subpopulations may be more sensitive to exposure
 - Comorbidities?
 - Genetic variants?
 - Psychosocial stress?

Study 2

Conclusions & Implications

Conclusions & implications, study 2

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- 1. Not all $PM_{2.5}$ components are associated with the first hospitalization in Parkinson's disease
 - Different $PM_{2.5}$ compositions may affect neurodegenerative diseases differently
 - May explain some of the variability in results across studies
- 2. Nitrate and organic matter most harmful components in the $\mathrm{PM}_{2.5}$ mixture
 - Source identification \rightarrow Targeted regulation
 - Mechanistic toxicological studies

Study 2

Conclusions & Implications

Future studies

COLUMBIA | MAILMAN SCHOOL UNIVERSITY | of PUBLIC HEALTH

- Individual-level analyses
 - Extrapolating results from area- to the individual-level presents challenges, particularly for the inference of causation
 - Individual-level studies or a combination of group- and individual-level analyses needed
- Specific markers of disease progression
 - Disease scale scores
 - Time from clinical diagnosis to death
- Mediators & modifiers

1. Overview of Methods to Address Distinct Research Questions on Environmental Mixtures: An Application to Persistent Organic Pollutants and Leukocyte Telomere Length

- Biostatistical methods in the study of environmental exposure to mixtures
- 2. Good Practices for Applied Statistical Learning in Epidemiology
- Stability of seed-dependent methods over different seeds
- 3. Gene X Environment in ALS: Environmental exposure to metals and TDP-43 genetic variants in clinical onset of ALS
- Interaction of low-level metal exposures with ALS genetic variants to influence time of clinical onset

Gibson, L. & Nunez, Y., et al. Env. Health, Aug. 2019 Nunez, Y. & Gibson, L., et al. Int. Journal of Epi. *Under revision* Merwin, S., Obis, T., Nunez Y., et al. Archives of Toxicology, Jan. 2017

<u>Advisors</u>

Marianthi-Anna Kioumourtzoglou Diane Re

Committee Members

Ana Navas-Acien Greg Freyer Marc Weisskopf Michael Aschner

MAK Lab

Jenni Shearston Lizzy Gibson Maggie Li Mike He Sebastian Roland

EHS Students

Ahlam Abuawad Alex Heaney Anne Bozack Daniel Carrión Roheeni Saxena Sarah Kramer

Funding

NIEHS R21 ES028472, R01 ES028805, P30 ES009089, P30 ES000002, T32 ES007322, and T32 ES007142, NIA R01 AG066793 01